Gartner คาดการณ์รายได้ชิป AI ทั่วโลก ในปี 2566 จะสูงแตะ 53 พันล้านดอลลาร์สหรัฐฯ | Techsauce

Gartner คาดการณ์รายได้ชิป AI ทั่วโลก ในปี 2566 จะสูงแตะ 53 พันล้านดอลลาร์สหรัฐฯ

Gartner คาดการณ์มูลค่าโอกาสในการสร้างรายได้ของเซมิคอนดักเตอร์ที่ออกแบบมาเพื่อรันเวิร์กโหลดปัญญาประดิษฐ์ (AI) ในอุตสาหกรรมเซมิคอนดักเตอร์ ปี 2566 จะเพิ่มขึ้น 20.9% จากปี 2565 หรือคิดเป็นมูลค่า 53.4 พันล้านดอลลาร์สหรัฐฯ

อลัน พรีสต์ลีย์ รองประธานฝ่ายวิจัยของการ์ทเนอร์ กล่าวว่า “การพัฒนา Generative AI และการใช้งานที่เพิ่มขึ้นของ AI-Based Applications ที่หลากหลายในดาต้าเซ็นเตอร์, โครงสร้างพื้นฐาน Edge และอุปกรณ์ปลายทาง จำเป็นต้องติดตั้งหน่วยประมวลผลกราฟิกประสิทธิภาพสูง (GPU) และอุปกรณ์เซมิคอนดักเตอร์ที่เหมาะสม ซึ่งสิ่งนี้กำลังขับเคลื่อนการผลิตและการใช้งานชิป AI” 

การ์ทเนอร์พบว่าตลอดช่วงเวลาของการคาดการณ์ รายได้จากเซมิคอนดักเตอร์ AI จะยังเติบโตเป็นตัวเลขสองหลัก โดยในปี 2567 จะเพิ่มขึ้น 25.6% หรือคิดเป็นมูลค่า 67.1 พันล้านดอลลาร์สหรัฐฯ (ดูตารางที่ 1) และภายในปี 2570 รายได้ชิป AI คาดว่าจะเพิ่มขึ้นกว่าเท่าตัวของตลาดในปี 2566 โดยมีมูลค่าถึง 119.4 พันล้านดอลลาร์สหรัฐฯ

ตารางที่ 1 การคาดการณ์รายได้ของ AI เซมิคอนดักเตอร์ทั่วโลก ระหว่างปี 2565-2567 (หน่วย: ล้านดอลลาร์สหรัฐฯ)

  •  2022: Revenue 44,220 ($M)
  • 2023: Revenue 53,445 ($M)
  • 2024: Revenue 67,148 ($M)

ที่มา: การ์ทเนอร์ (สิงหาคม 2566)

อุตสาหกรรมและองค์กรด้านไอทีจำนวนมากจะปรับใช้ระบบที่มีชิป AI ตามปริมาณเวิร์กโหลดงานที่ใช้ AI ในองค์กรที่เติบโตสูงขึ้น หากพิจารณาตลาดอุปกรณ์อิเล็กทรอนิกส์สำหรับผู้บริโภค นักวิเคราะห์การ์ทเนอร์ประเมินว่า ภายในสิ้นปี 2566 มูลค่าของชิปประมวลผลในแอปพลิเคชันที่ใช้งาน AI (AI-Enabled Application) ในอุปกรณ์ต่าง ๆ จะแตะ 1.2 พันล้านดอลลาร์สหรัฐฯ โดยเพิ่มขึ้นจาก 558 ล้านดอลลาร์สหรัฐฯ ในปี 2565

ความต้องการด้านการออกแบบที่มีประสิทธิภาพและเหมาะสมที่สุดสำหรับรองรับการดำเนินการปริมาณเวิร์กโหลดงานที่ใช้ AI อย่างคุ้มค่าส่งผลให้มีการใช้งานชิป AI ที่ออกแบบเองเพิ่มขึ้น พรีสต์ลีย์ กล่าวเพิ่มเติมว่า “สำหรับองค์กรหลาย ๆ แห่ง การปรับใช้ชิป AI ที่ออกแบบเองสำหรับใช้งานในสเกลใหญ่ ๆ จะเข้ามาแทนที่สถาปัตยกรรมชิปในปัจจุบัน รวมถึง discrete GPUs สำหรับใช้ในปริมาณเวิร์กโหลดงานที่ใช้ AI ที่หลากหลาย โดยเฉพาะอย่างยิ่งการใช้เทคนิค Generative AI” 

Generative AI ยังกระตุ้นความต้องการระบบคอมพิวเตอร์ที่มีประสิทธิภาพสูงสำหรับการพัฒนาและการนำไปใช้ โดยมีผู้จำหน่ายหลายรายที่เสนอระบบ GPU ที่มีประสิทธิภาพสูง และอุปกรณ์เครือข่ายซึ่งมองว่าเป็นประโยชน์ระยะสั้น แต่ในระยะยาว การ์ทเนอร์คาดว่าจะมีการใช้ชิป AI ที่ออกแบบเองเพิ่มขึ้น

เมื่อผู้ให้บริการคลาวด์ขนาดใหญ่ (หรือ Hyperscaler) มองหาวิธีเพิ่มประสิทธิภาพและความคุ้มค่าในการปรับใช้แอปพลิเคชันเหล่านี้

ลงทะเบียนเข้าสู่ระบบ เพื่ออ่านบทความฟรีไม่จำกัด

No comment

RELATED ARTICLE

Responsive image

ทรู ไอดีซี ดาต้าเซ็นเตอร์ คว้ารางวัลนานาชาติ ด้านออกแบบและพลังงาน พร้อมรองรับเทคโนโลยี AI

ทรู อินเทอร์เน็ต ดาต้า เซ็นเตอร์ จำกัด หรือ ทรู ไอดีซี ผู้ให้บริการดาต้าเซ็นเตอร์ชั้นนำภายใต้เครือเจริญโภคภัณฑ์ ประกาศความสำเร็จของโครงการ ทรู ไอดีซี อีสต์ บางนา แคมปัส ที่สร้างปรา...

Responsive image

ซีพี แอ็กซ์ตร้า จับมือพันธมิตร พัฒนาโซลูชัน "Smart Restaurant" พลิกโฉมร้านอาหารยุคใหม่ สู่ความสำเร็จยุคดิจิทัล

ซีพี แอ็กซ์ตร้า ร่วมกับพันธมิตรในเครือ ได้แก่ บริษัท ทรู มันนี่ จำกัด บริษัท ทรู ดิจิทัล กรุ๊ป จำกัด และ บริษัท แอสเซนด์ กรุ๊ป จำกัดจัดงานสัมมนา ‘Smart Restaurant ถอดรหัสความสำเร็...

Responsive image

noBitter ผนึกกำลัง 3 มหาวิทยาลัยชั้นนำ พัฒนา “ฟาร์มนวัตกรรม” ยกระดับเกษตรไทยสู่เวทีโลก

noBitter ผนึกกำลัง 3 มหาวิทยาลัยชั้นนำ จุฬาฯ ลาดกระบัง และปัญญาภิวัฒน์ ผนึกความร่วมมือ เดินหน้าพัฒนางานวิจัยเกษตรนวัตกรรมเพื่อยกระดับเกษตรไทยสู่เวทีโลกโดยมุ่งเน้นผลผลิตจากเทคโนโลย...