ดร.อร: นอกจากวิเคราะห์ข้อมูลและพัฒนา Product ให้ธนาคารแล้ว เรายังมีแผนจะร่วมงานกับ Partner ในอุตสาหกรรมอื่นๆ ซึ่งกำลังอยู่ในระหว่างเจรจาและจะเปิดตัวในอนาคต ซึ่งความร่วมมือด้านบนเกิดจากพันธกิจของเรา เพราะเราพยายามเข้าใจลูกค้ากลุ่ม Millennial ในทุกๆ มิติ จึงจับมือกับ Partner ในแต่ละอุตสาหกรรมที่มีเป้าหมายเป็นกลุ่ม Millennial
ดร.อร: โครงสร้างของ SCB Abacus แบ่งเป็น 5 กล่อง แต่ถ้าเน้นที่การสร้าง Product จะมีอยู่ 3 กล่อง ได้แก่ Data Scientist, Data Engineer กับ Software Developer
Data Engineer เป็นคนทำความเข้าใจ Data เข้าใจว่าอะไรเป็นสิ่งสำคัญสำหรับข้อมูลชุดนี้ ต้องรู้เรื่องเครื่องมือ รู้วิธีการจัดเก็บข้อมูลทั้งหมด ซึ่ง Data Scientist ที่ทำหน้าที่ค้นหาข้อมูลและสร้าง Pattern ก็จำเป็นต้องมี Data Engineer ช่วย ทั้งสองทีมนี้ต้องทำงานร่วมกันสำหรับการจัดการข้อมูล หลังจากนั้น Software Developer ก็จะเข้ามาจัดการ Data ให้กลายเป็น Product ที่ใช้งานได้จริง
ในประเทศไทยคนรู้จัก Data Scientist เยอะและกำลังเป็นที่ต้องการในหลายองค์กร อาชีพนี้มีฐานเงินเดือนสูง แต่ในทางกลับกัน คนกลับรู้จัก Data Engineer น้อย ซึ่งจริงๆ ฐานเงินเดือนของ Data Engineer ก็ไม่น้อยเลย และ Data Scientist เองก็ทำงานไม่ได้ ถ้าไม่มี Data Engineer ช่วยเหลือนั่นหมายความว่าการสร้าง Product ขึ้นมานั้น 3 กล่องที่กล่าวไปนั้นต้องทำงานร่วมกันไป ขาดส่วนใดส่วนหนึ่งไม่ได้ นี่จึงเป็นโครงสร้างสำคัญในการพัฒนา Product ของ SCB Abacus
ดร.อร: ต้องถามก่อนว่าโจทย์ของแต่ละองค์กรคืออะไร ความท้าทายของธุรกิจของเขาคืออะไร ปัญหาทางธุรกิจที่เขามีมันคืออะไร เพราะไม่ใช่ทุกปัญหาที่องค์กรมีจะใช้ Data Scientist ในการแก้ไขปัญหาตรงนั้นได้ โดยความหมายของ Data Scientist ของแต่ละองค์กรเองก็ไม่เหมือนกัน อย่างเช่น SCB Abacus หน้าที่ของทีม Data Science จะเป็นแบบ Advanced หน่อย คือออกแบบทุกอย่างเองหมด แต่ในขณะเดียวกันองค์กรขนาดกลางหรือในองค์กรอื่น เขาอาจจะต้องการทักษะของ Data Scientist แต่ไม่ได้ต้องใช้ทักษะมากขนาดนั้น
ณ วันนี้ Data Scientist มี 2 รูปเเบบเป็นหลัก ประเภทแรกมุ่งเน้นการวิเคราะห์ข้อมูลและอีกประเภทที่มุ่งเน้นการสร้างผลิตภัณฑ์ (data product) ต้องถามว่า Data Scientist ที่องค์กรนั้นๆ ต้องการหามานั้นเพื่ออะไร สมมติว่ามีร้านขายของนำเข้าส่งออก เขาอาจจะพูดว่าอยากได้ Data Scientist แต่ว่าเขาอาจจะทำแค่ Business Intelligence ซึ่งเนื้องานที่เป็น SCB Abacus มุ่งเน้นการพัฒนาผลิตภัณฑ์โดยเฉพาะ ดังนั้น Data Scientist ที่นี่จะมีพื้นฐานทางวิทยาการคอมพิวเตอร์ หรือวิศวกรรมซอฟต์แวร์
สำหรับ Data Science จะมี 3 ระดับ เริ่มจาก Data Analysis ที่สรุปข้อมูลสถิติออกมา วิเคราะห์ว่าแต่ละเดือนขายเป็นอย่างไร เมื่อมา Data Analytics ก็เป็นขั้นหาเหตุผลแล้ว ว่าทำไมยอดขายถึงเป็นแบบนี้ สุดท้ายคือ Advanced Data Analytics ก็จะทำ AI และ machine learning เหมือนที่บริษัท ของเราทำ ซึ่งแต่ละองค์กรก็เรียกไม่เหมือนกัน บางองค์กรอาจรับสมัคร Data Scientist แต่เอาไปทำแค่ Analysis ก็มี
ดร.อร: ผู้บริหารควรจะเริ่มเข้าใจก่อนว่าการทำ Analytic และ Analysis มันช่วยอะไร ต้องเข้าใจแนวคิดก่อนว่า Analytic มันคืออะไร และเข้าใจโจทย์ธุรกิจของคนเองว่าคืออะไร กำลังทำอะไร เป้าหมายคืออะไร อย่าตั้งเป้าหมายเป็นการตั้งทีม Analytic แต่ควรตั้งว่าอยากเพิ่มยอดขาย หรืออยากได้ Engagement เพิ่ม แล้วเอาโจทย์นี้มาให้ทีม Analytic ช่วยแก้ปัญหา
ดร.อร: คิดว่าไม่มีค่ะ เพราะคิดว่างานสายนี้มีความท้าทายแบบเดียวกันทั้งกับผู้ชายและผู้หญิง ที่เราเห็นผู้ชายเยอะกว่าอาจเกิดจากการ Stereotyping ว่าผู้ชายต้องชอบเทคโนโลยี หรือไม่ก็อาจเกิดจากผู้ชายที่ชอบและสนุกกับงานสาย Tech มีจำนวนมากกว่า ซึ่งจริงๆ ผู้หญิงที่ชอบกับงานสายนี้ก็มี ส่วนตัวจึงไม่เห็นช่องว่างแตกต่างกันขนาดนั้น
ถ้าเป็นต่างประเทศก็อาจเป็นอีกเรื่องนึง เท่าที่อ่านจากบทความในต่างประเทศ ก็เป็นเรื่องของ Stereotyping เป็นเรื่องของการไม่ยอมรับกัน แต่สำหรับเมืองไทยเรื่องแบบนี้ไม่มี ผู้หญิงส่วนใหญ่เลือกที่จะไม่อยู่เอง ไม่ได้เกิดจากความท้าทายแบบนี้แล้วต้องเดินออกจากสายนี้
นอกเหนือจาก Data Scientist แล้ว อีกหนึ่งฟันเฟืองสำคัญที่ดร.อร ได้พูดถึงก็คือ Data Engineer ในบทความหน้าเราจะไปคุยกับ Data Engineer ถึงบทบาทหน้าที่ และความท้ายทายในการสร้างผลิตภัณฑ์ออกมา ติดตามได้ต่อในบทความหน้าค่ะ
ลงทะเบียนเข้าสู่ระบบ เพื่ออ่านบทความฟรีไม่จำกัด