Bluebik เผยว่า ในโลกธุรกิจยุคใหม่ หลายๆคนต่างบอกว่าการทำการตลาดที่ขับเคลื่อนด้วยข้อมูล Data-driven Marketing เพราะข้อมูลคือสิ่งที่ทำให้เราเข้าใจลูกค้าได้ดี สามารถค้นหาความชอบและความต้องการของลูกค้าได้อย่างชัดเจนขึ้น และทำให้ลูกค้าเลือกใช้สินค้าและบริการของเราอย่างต่อเนื่องในระยะยาว แต่คำถามคือหากธุรกิจจะเริ่มทำการตลาดแบบขับเคลื่อนด้วยข้อมูล ควรจะเริ่มต้นอย่างไร
คุณพิพัฒน์ ประภาพรรณพงศ์ ผู้อำนวยการและหัวหน้าทีม Big Data and Advanced Analytics บริษัท บลูบิค กรุ๊ป จำกัด (มหาชน) ผู้เชี่ยวชาญด้านข้อมูล ระบุว่า ในปัจจุบันธุรกิจทั่วโลกหันมาให้ความสำคัญและเน้นลงทุนในด้านการจัดเก็บและการวิเคราะห์ข้อมูลเพื่อปลดล็อกข้อจำกัดและเพิ่มศักยภาพการเติบโตเพื่อสร้างผลกำไร โดยการทำ Data-driven Marketing ถือเป็นเครื่องมือการตลาดหนึ่งที่จะช่วยเสนอสินค้าและบริการให้กับลูกค้าเพื่อตอบโจทย์ความต้องการได้อย่างตรงใจ
การทำ Data Driven Marketing จึงเกี่ยวข้องกับกระบวนการในการจัดเก็บ วิเคราะห์และสังเคราะห์ข้อมูลเพื่อที่จะสามารถเข้าใจในความต้องการของลูกค้าได้ในทุกมิติ ฉะนั้นก่อนที่นักการตลาดจะเริ่มลงมือปฏิบัติเพื่อผลักดันให้ Data-driven Marketing ประสบความสำเร็จและสร้างผลลัพธ์ได้จริง
1. เป้าหมายของธุรกิจ (Business Objectives)
ธุรกิจหรือนักการตลาดควรวางเป้าหมายให้ชัดเจนว่าต้องการนำผลลัพธ์จากการวิเคราะห์ข้อมูลไปใช้เพื่อเป้าหมายอะไร เช่น ต้องการขยายฐานลูกค้าให้ได้ 1 ล้านคนภายใน 3 ปี การตั้งเป้าหมายที่ชัดเจนคือสิ่งสำคัญลำดับแรกที่จะช่วยกำหนดความสำเร็จในการทำ Data-driven Marketing โดยกำหนดขอบเขตของการวิเคราะห์ข้อมูลว่าควรเข้าไปดำเนินการตรงจุดไหน ธุรกิจจึงจะบรรลุเป้าหมายที่วางไว้
เมื่อเป้าหมายของธุรกิจชัดเจนแล้ว ขั้นตอนต่อไปเป็นการคิดกรณีการใช้งาน (Use Case Generation) ซึ่งมีความแตกต่างกันไปตามประเภทธุรกิจและปัจจัยแวดล้อมในการทำธุรกิจ รวมถึงต้องเลือกกรณีการใช้งานให้เหมาะสมกับเป้าหมายของธุรกิจ ดังตัวอย่างกรณีการใช้งานต่อไปนี้
หลังคิด Use case เบื้องต้นได้แล้ว คำถามต่อมาคือธุรกิจจะรู้ได้อย่างไรว่า ควรทำ Use case ใดที่จะช่วยสร้างผลลัพธ์ทางธุรกิจได้จริง ดังนั้นจึงต้องมีขั้นตอนที่เรียกว่าการประเมินและเลือก Use case ที่เหมาะสม (Use case prioritization) ซึ่งสามารถแบ่งการประเมินเป็น 2 แกน ได้แก่
2. ความพร้อมด้านข้อมูล (Data Readiness)
แน่นอนว่าหากต้องการทำการตลาดที่ขับเคลื่อนด้วยข้อมูลสิ่งสำคัญที่สุดก็คือข้อมูล ดังนั้นธุรกิจจึงต้องสำรวจและประเมินข้อมูลต่างๆ ในองค์กรว่าคุณภาพของข้อมูลเป็นอย่างไร มีข้อมูลเพียงพอต่อการนำไปวิเคราะห์หรือไม่ และมีข้อมูลประเภทไหนบ้าง
1. ข้อมูลที่ไม่มีโครงสร้าง (Unstructured Data) เช่น รูปภาพ วิดีโอ ไฟล์เสียง
2. ข้อมูลกึ่งโครงสร้าง (Semi-structured Data) เช่น ไฟล์รูปแบบ XML (Extensible Markup Language)
3. ข้อมูลที่มีโครงสร้าง (Structured Data) เช่น ตารางข้อมูลในฐานข้อมูล
ฉะนั้นการนำข้อมูลมาออกแบบ Use case จะช่วยสร้างความได้เปรียบของธุรกิจได้จริง ธุรกิจจึงควรย้อนมาดู
ช่องทางในการได้มาซึ่งข้อมูล ว่ามีการรวบรวมข้อมูลมาอย่างไร จากแหล่งไหน ส่วนไหนที่ยังขาดหายไป และจะนำข้อมูลนั้นมาใช้งานด้วยวิธีใด เช่น การเก็บข้อมูลพฤติกรรมของลูกค้า โดยใช้หลักการเกมมาทำแคมเปญ (gamification campaign) เพื่อสร้างปฎิสัมพันธ์กับลูกค้า การเพิ่มการใช้งานระบบ CRM เพื่อช่วยในการรวบรวมข้อมูลลูกค้าได้อย่างมีประสิทธิภาพ หรือการนำ Centralized Data Lake/Data warehouse มาช่วยในการเก็บรวบรวมข้อมูลจากแหล่งข้อมูลหลายแหล่ง เป็นต้น
3. การออกแบบและพัฒนาโมเดลวิเคราะห์ข้อมูล (Design & Development)
ก่อนเริ่มออกแบบโมเดลวิเคราะห์ข้อมูล ธุรกิจควรดูก่อนว่าต้องการรู้อะไร และรู้ไปทำไม เพื่อเลือกรูปแบบการวิเคราะห์ข้อมูลที่เหมาะสม เบื้องต้นสามารถแบ่งการวิเคราะห์ข้อมูลออกเป็น 4 รูปแบบ ได้แก่
1. การวิเคราะห์แบบพื้นฐาน (Descriptive Analytics) เป็นการวิเคราะห์สิ่งที่เกิดขึ้นในอดีต เช่น ข้อมูลยอดขาย พฤติกรรมลูกค้าที่เคยซื้อสินค้า เป็นต้น
2.การวิเคราะห์แบบวินิจฉัย (Diagnostic Analytics) เป็นการค้นหาสาเหตุว่าสิ่งที่เกิดขึ้นนั้นเกิดจากปัจจัยใด โดยวิเคราะห์เชิงหาความสัมพันธ์ (Correlation Analysis)เช่น ยอดขายขึ้นเพราะอะไร ขึ้นเพราะการออกแคมเปญโปรโมชันหรือไม่
3. การวิเคราะห์แบบพยากรณ์ (Predictive Analytics) การคาดการณ์แนวโน้มที่น่าจะเกิดขึ้นในอนาคต ด้วยการวิเคราะห์ข้อมูลจากในอดีต
4. การวิเคราะห์แบบให้คำแนะนำ (Prescriptive Analytics) เป็นการวิเคราะห์เพื่อคาดการณ์สิ่งที่ควรจะทำในอนาคต
สำหรับขั้นตอนการพัฒนาโมเดลวิเคราะห์ข้อมูล ควรดำเนินการหลังธุรกิจมีเป้าหมายที่ชัดเจน เลือก Use case และเตรียมข้อมูลที่จำเป็นต่างๆ ไว้พร้อมแล้ว โดยขั้นตอนการพัฒนาโมเดลแบ่งเป็น
4. การเปลี่ยนข้อมูลเชิงลึกเป็นผลลัพธ์ทางธุรกิจ (Execution)
อีกขั้นตอนสำคัญเมื่อได้รับข้อมูลที่ต้องการจากการวิเคราะห์แล้ว จะทำอย่างไรให้สามารถเปลี่ยนข้อมูลเชิงลึก (Insight) เหล่านั้นเป็นผลลัพธ์ทางธุรกิจได้จริง
ก่อนออกแบบแคมเปญการตลาด ธุรกิจควรวางองค์ประกอบคร่าวๆ ของแคมเปญ เช่น ใครคือกลุ่มลูกค้าเป้าหมาย ต้องการนำเสนออะไรให้ลูกค้า และธุรกิจจะติดต่อกับกลุ่มลูกค้าได้อย่างไร หลังจากนั้นนำข้อมูลเชิงลึก (Insight) ที่ได้มา ออกแบบรูปแบบแคมเปญ โดยมีแนวทางเบื้องต้นที่สามารถนำไปปรับใช้ได้ ได้แก่
คุณ พิพัฒน์ กล่าวทิ้งท้ายว่า “โดยสรุปแล้ว การทำ Data-driven Marketing ให้ประสบความสำเร็จได้นั้น ต้องตั้งต้นที่การวางเป้าหมายธุรกิจ การวางกลยุทธ์ ประเมินความพร้อมด้านข้อมูล ออกแบบและพัฒนาโมเดลวิเคราะห์ และเปลี่ยนข้อมูลเชิงลึกเป็นผลลัพธ์ทางธุรกิจ เพื่อประสิทธิภาพการทำการตลาดผ่านข้อมูลและสร้างการเติบโตให้ธุรกิจในระยะยาว”
ลงทะเบียนเข้าสู่ระบบ เพื่ออ่านบทความฟรีไม่จำกัด