แอร์บัสพร้อมนำสถานีตรวจวัดข้อมูลสภาพอากาศของดาวอังคาร (Mars Environmental Dynamics Analyzer หรือ MEDA meteorological station) เทคโนโลยีหลักสำหรับให้ข้อมูลสำคัญที่ได้จากการตรวจวัดอากาศดาวอังคารแก่นักวิทยาศาสตร์ และระบบเสาอากาศรับสัญญาณแรงสูงที่ทำให้การสื่อสารกลับมายังโลกในช่วงภารกิจ MARS2020 เป็นไปด้วยความรวดเร็ว ปฏิบัติงานทันทีเมื่อยานเพอร์เซเวียแรนซ์ โรเวอร์ (Perseverance rover) ของนาซ่าลงจอดบนพื้นผิวของดาวอังคารในวันพฤหัสบดีที่ 25 กุมภาพันธ์นี้
ยาน Perseverance จะใช้เครื่องมือวิทยาศาสตร์ 7 ประเภท เพื่อที่จะศึกษาสภาพแวดล้อมทางชีวภาพและธรณีวิทยาของดาวอังคาร รวมไปถึงสถานีตรวจวัดข้อมูลสภาพอากาศของดาวอังคาร MEDA ที่แอร์บัสได้ออกแบบและสร้างขึ้นมา อุปกรณ์ตรวจวัดสภาพอากาศ MEDA จะวัดปริมาณตัวแปรสภาวะแวดล้อมโดยใช้เซ็นเซอร์ที่กระจายอยู่ทั่วโรเวอร์สำรวจอวกาศนี้ โดยจะตรวจวัดความเร็วและทิศทางลม ความชื้นสัมพัทธ์ ความดันบรรยากาศ อุณหภูมิของดินและอากาศ รังสีดวงอาทิตย์ และคุณสมบัติของฝุ่นละออง ซึ่งค่าพารามิเตอร์เหล่านี้จะเป็นตัวแปรที่สำคัญต่อกระบวนการตัดสินใจอิสระเพื่อให้เฮลิคอปเตอร์ Ingenuity สำรวจดาวอังคารบนโรเวอร์ทำการบิน
MEDA เป็นสถานีตรวจวัดข้อมูลสภาพอากาศของดาวอังคารแห่งที่สามซึ่งดูแลโดยแอร์บัสที่มีความเชี่ยวชาญในด้านนี้ ในปี พ.ศ.2555 ยานสำรวจคิวริออสซิตี้ (Curiosity rover) ยานสำรวจสภาพแวดล้อมบนดาวอังคารหรือที่รู้จักกันในชื่อ REMS (Rover Environmental Monitoring Station) ลงจอดบนพื้นผิวดาวอังคารเป็นครั้งแรก และครั้งที่ 2 ในปี พ.ศ.2561 ได้ทำการส่งอุปกรณ์ตรวจสอบและเฝ้าระวังสภาพอากาศ ณ จุดลงจอดของยาน ที่มีชื่อว่า TWINS (Temperature and Wind for InSight) เดินทางไปพร้อมกับยานสำรวจอินไซต์ (InSight) ซึ่งทั้งสองครั้งนับเป็นภารกิจที่ประสบความสำเร็จของทีมนักวิทยาศาสตร์จาก Jet Propulsion Laboratory (หรือ JPL) ที่ดูแลโดย NASA
ข้อมูลทั้งหมดที่ยาน Perseverance ค้นพบจะถูกส่งมายังโลกผ่านระบบเสาอากาศรับสัญญาณแรงสูง (HGAS) ซึ่งออกแบบและผลิตโดยแอร์บัส โดยใช้สายอากาศรับและส่งสัญญาณ X-band ที่จะทำให้เกิดการสื่อสารข้อมูลด้วยความเร็วสูง เสาอากาศนี้จะใช้เทคโนโลยีไมโครสตริป (microstrip technology) ที่พัฒนาขึ้นเอง มีคุณสมบัติที่สามารถป้องกันฝุ่นละอองเพื่อรักษาความสะอาดและเสถียรภาพทางความร้อน
เสาอากาศจะส่งข้อมูลวิทยาศาสตร์ที่สร้างขึ้นโดยเครื่องมือต่าง ๆ และข้อมูลเกี่ยวกับสถานะสุขภาพของยานโรเวอร์โดยตรงและไม่จำเป็นต้องเชื่อมต่อตัวกลาง (เช่น ยานอวกาศ) นอกจากนี้ ยานพาหนะจะได้รับคำสั่งพร้อมกับภารกิจในแต่ละวันจากโลกเนื่องจากเสาอากาศสามารถควบคุมได้จึงสามารถส่ง “ลำแสง” ของข้อมูลชี้ตรงมายังโลกโดยไม่ต้องเคลื่อนย้ายตัวยานซึ่งช่วยทำให้ประหยัดพลังงานมากขึ้น
การสำรวจแหล่งความร้อนสูงบนดาวอังคารนั้น ระบบเสาอากาศจะต้องมีอุณหภูมิตั้งแต่ -135ºC ถึง +90ºC พร้อมกับการทดสอบความทนทานจากความร้อนอย่างละเอียดถี่ถ้วน โดยจะเป็นระบบสายอากาศ HGAS อันที่สองของแอร์บัสบนดาวอังคาร ซึ่งระบบแรกยังคงทำงานได้อย่างไร้ที่ติบนยานสำรวจคิวริออสซิตี้มาตลอด 8 ปี
Mars2020 เป็นภารกิจที่ต้องใช้ความพยายามมากที่สุดเท่าที่เคยส่งยานอวกาศไปดาวอังคาร เนื่องจากยานเหล่านั้นจะต้องทำการตรวขสอบหินและดินของดาวอังคารโดยละเอียดมากกว่าที่เคยทำมาในการค้นหาร่องรอยของสิ่งมีชีวิตในอดีตบนดาวเคราะห์และจัดเก็บเพื่อการกลับสู่โลกในภายหลัง สัญญาณ หรือร่องรอยของสิ่งมีชีวิตในอดีต (bio-signature) นอกจากนี้ ภารกิจ Mars2020 จะแสดงลักษณะของกระบวนการทางธรณีวิทยาที่ประกอบขึ้นเป็นพื้นผิว และจะวัดวิวัฒนาการประจำวันและตามฤดูกาลของกระบวนการที่เกิดขึ้นในชั้นบรรยากาศของดาวอังคารรวมไปถึงลักษณะของฝุ่นแขวนลอย ยานเพอร์เซวีแรนซ์ยังทดสอบเทคโนโลยีเพื่อช่วยปูทางสำหรับการสำรวจดาวอังคารของมนุษย์ในอนาคต เช่น การสร้างออกซิเจนจากก๊าซคาร์บอนไดออกไซด์ในชั้นบรรยากาศ หรือการบินเฮลิคอปเตอร์ขนาดเล็กครั้งแรกบนดาวเคราะห์ดวงอื่น
ยานมาร์สเอกซ์เพรสและยานบีเกิล 2 (Mars Express and Beagle 2)
ภารกิจสำรวจดาวอังคาร ExoMars
ตัวอย่าง Fetch Rover
Earth Return Orbiter
แอร์บัสจะสร้าง Earth Return Orbiter ซึ่งรวมรวมตัวอย่างจากวงโคจรของดาวอังคารและส่งกลับมายังโลก แอร์บัสจะเป็นผู้รับเหมาหลักของ European Space Agency (ESA) ในภารกิจ Mars Sample Return’s Earth Return Orbiter (ERO) ซึ่งเป็นยานอวกาศลำแรกที่นำตัวอย่างกลับมายังโลกจากดาวอังคาร
ลงทะเบียนเข้าสู่ระบบ เพื่ออ่านบทความฟรีไม่จำกัด